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COMMENT 

On the Schrodinger equation for the interaction 
x' + Ax*/( 1 + gx') 

M Cohen 
Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 9 1904, 
Israel 

Received 6 April 1984 

Abstract. The lowest even- and odd-parity energy levels of Schrodinger's equation for the 
interaction x2 + Ax2/( 1 + gx2) for arbitrary positive values of A and g are obtained accurately 
from a first-order variational perturbation treatment. 

Schrodinger's equation for the potential 

V(x) = x2 + Ax2/( 1 + gx2), A,g30,  

has been the subject of many recent calculations. Exact solutions of the form 

44x) = exp(-x2/2)W), (2) 

where C#J(X) is a polynomial containing either even or odd powers of x, are known to 
exist when the parameters A and g are suitably related (Flessas 1981, Varma 1981). 
For other values of the potential parameters, approximate eigenvalues have been 
calculated by a large number of different methods. (The recent paper of Chaudhuri 
and Mukherjee (1983) in this journal contains a comprehensive list of references.) 

In spite of appearances the approximation method of Chaudhuri and Mukherjee 
(1983) is actually equivalent to first-order perturbation theory. Moreover, their results 
may be improved without calculating higher-order corrections, by simply including a 
variational scale parameter. Several of the earlier treatments also exploited scaling 
transformations suitable for limited ranges of A and g (Mitra 1978, Kaushal 1979), or 
appropriate (approximately) to a secular equation treatment of a set of levels (Bessis 
and Bessis 1980). Here, we treat the lowest even- and odd-parity levels only, so that 
the scale parameters may be chosen so as to optimise the energy through first order. 

Basically, we follow the approach of Bessis and Bessis (1980), and choose 

Ho = - d2/ dx2 + a2x2  (3) 

but leave CY to be determined. The exact solutions of this model Ho are well known, 
and the energy of the nth state may be calculated correct to first order in the perturbation 

(4) H ,  = (1  - 2 ) x 2  + pgx2/( 1 + gx2), 

Eb"'(CY)+Eln)(CY)=(n+l)(CY +l/.)+(pgx2/(1 +gx2))n. (5) 

CL = A / &  

from the formula 
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The expectation value (pgx2/(1 +gx’)), may be written in various ways, in particular 

(pgx2/(1 +gx2Nn =p-pCLl/(l +gx2)), = t p - $ p ( ( l  -gx2)/(1 +gx’)),. ( 5 4  b) 

Bessis and Bessis (1980) based their calculations on (Sa), while Chaudhuri and Mukher- 
jee (1983) used (Sb); both integrals may be evalued analytically. 

For the lowest even and odd levels, (5) constitutes an upper bound to the exact 
energy, and may be minimised with respect to a. Explicitly, we have 

E ( n = O ) ~ t ( a + l / a ) + t L [ ~ - I ~ ( t ) ] ,  ( 6 a )  

E ( n =  1 ) ~ t ( a + 1 / a ) + p - 2 p t ’ [ 1 - 1 ~ ( t ) ] ,  (6b) 

t’= ./g, 

where we write (cf Bessis and Bessis 1980) 

zo( t )  = J i r  exp(t2) erfc t, 

and erfc t denotes the complementary error function 
X 

erfc f = (2/4;) 1 exp(-u’) du 
1 

(see e.g., Abramowitz and Stegun 1965). 

approximations, rapidly convergent for small t (i.e. for large g): 
Introducing a power series representation of the error function yields the following 

- 
E(n=O)= ; (a  + l / a ) + p ( 1 - J ~ z + + 2 t ~ - 4 - r r z ~ + ~ t ~ +  ...I, (sa)  

E ( n =  1 ) = t ( a + 1 / a ) + p ( 1 - 2 f ~ + 2 J ~ t ~ - 4 ~ ~ + 2 J ~ f ~ -  . . . I .  (86) 
Note that both these approximations differ (in their coefficients of t2) from the 
expansions of Chaudhuri and Mukherjee (1983). 

For sufficiently large g, the series in t may be neglected and the optimal values of 
a are clearly close to unity for both levels; more precise optimal values of a may be 
obtained by retaining the lowest-order terms of (8a, b), and it is at once apparent that 
aopt is not a simple bilinear function of the parameters A and g. In particular, for the 
n = 1 level, 

aopt = (1 - 4A/3g2)-”’. (9) 

The series (8a, b) converge too slowly to be useful for large t (small g), but we may 
then use an asymptotic expansion for lo(t) to obtain 

E(n=O)=;(a  + I / a ) + p ( 1 / 2 t ’ - 3 / 4 t 2 + 1 5 / 8 f 6 -  . . .), 
E(n = I)=;(. + l / a ) + 3 p ( l / 2 t 2 - 5 / 4 t 4 + 3 S / 8 t 6 -  . . .). 

( loa )  

(lob) 
Retaining only the leading term of the asymptotic expansion yields the optimal scale 
factor (for both levels) 

( 1  1) 
a result which merely confirms that V(x) reduces effectively to a harmonic potential 
with a’ = 1 + A  when g is sufficiently small. 

For g neither large nor small, the first-order upper bounds (6) must be optimised 
numerically. Table 1 contitins some results for a representative set of values of the 
potential parameters, A and g. It will be apparent that, with a chosen optimally, a 

aopt = (1 +A)”’ ,  
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single function usually provides high accuracy?. This should be contrasted with the 
observation of Bessis and Bessis (1980) that overall accuracy of three significant figures 
requires combinations of four (non-optimally scaled) functions. 
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t Our result for A = 100, g = 0.1 is actually lower (and therefore more accurate) than those of Mitra (1978) 
and Bessis and Bessis (1980). 


